python 代写

Python是一种高级编程语言,它用于创建网页,移动应用程序,脚本和机器学习模型。它拥有强大的类库,允许开发人员快速编写功能强大的应用程序。

Python有许多优点,其中包括:它是相对容易学习和使用的动态编程语言;它拥有丰富的内置库和模块;它拥有广泛的社区支持;它支持跨平台;它可以进行快速原型开发;它可以有效地利用内存;它可以使用C / C ++扩展;它支持大量的开源框架和库;它具有强大的编程能力和可读性;它支持多种编程风格;它可以进行测试驱动开发,以及其他许多优点。

CM50270 Reinforcement Learning¶

rl_cw_2_racetrack CM50270 Reinforcement Learning¶ Graded Assessment: Racetrack¶ In this assignment, you will compare the performance of three reinforcement learning algorithms – On-Policy First-Visit Monte-Carlo Control, Sarsa, and Q-Learning – in a simple racetrack environment. You will then implement a modified TD agent that improves upon the learning performance of a basic Q-Learning agent. Total number …

CM50270 Reinforcement Learning¶ Read More »

COMP6451 Assignment 2 solidity代写

UNSW COMP6451 Assignment 2 (version 2)∗ Ethereum Programming (ERC-20 Token Dutch Auction Market) Total Marks: 35 Due Date: 5pm, March 31, 2023 ©R. van der Meyden, UNSW. All rights reserved. (Distribution to third parties and/or placement on non-UNSW websites prohibited.) Background A variety of schemes are used to sell goods in such a way as …

COMP6451 Assignment 2 solidity代写 Read More »

CogSci131 Assignment 1 NeuralNetsFall23

CogSci131 Assignment 1 NeuralNetsFall23 import numpy as np %matplotlib inline import matplotlib.pyplot as plt class Neural_Network(object): def __init__(self): #Define Parameters self.inputLayerSize = 2 self.outputLayerSize=1 self.hiddenLayerSize=3 #Define Weights self.W1=np.random.rand(self.inputLayerSize,self.hiddenLayerSize) self.W2=np.random.rand(self.hiddenLayerSize,self.outputLayerSize) def forward(self,X): #Propagate inputs through network self.z2 = np.dot(X,self.W1) self.a2 = self.sigmoid(self.z2) self.z3 = np.dot(self.a2,self.W2) yHat = self.sigmoid(self.z3) return yHat def sigmoid(self, z): #Apply Sigmoid Activation …

CogSci131 Assignment 1 NeuralNetsFall23 Read More »

COMP9417 homework 1

COMP9417 – Machine Learning Homework 1: Regularized Optimization & Gradient Methods Introduction In this homework we will explore gradient based optimization. Gradient based algorithms have been crucial to the development of machine learning in the last few decades. The most famous exam- ple is the backpropagation algorithm used in deep learning, which is in fact …

COMP9417 homework 1 Read More »

Assig1Spring23

Assig1Spring23 import numpy as np import matplotlib.pyplot as plt %matplotlib inline from IPython.core.debugger import set_trace def check_type(y,t): # Ensure Input is Correct return y.dtype == np.floating and t.dtype == np.floating class _Integrator(): def integrate(self,func,y0,t): time_delta_grid = t[1:] – t[:-1] y = np.zeros((y0.shape[0],t.shape[0])) y[:,0] = y0 # Euler Step or Runge-Kutta Second Order Integration Step for …

Assig1Spring23 Read More »

COMP0058 Coding task description

Coding Task COMP0058 – Machine Learning Scientist Background Ensemble methods are a cornerstone of machine learning, where multiple models are trained to solve the same problem and combined to get better results. They are designed to improve the robustness and accuracy of Machine Learning algorithms. Your task is to demonstrate your understanding and ability to …

COMP0058 Coding task description Read More »

AC061D26,

import pyrtl main_memory = pyrtl.MemBlock(bitwidth=32, addrwidth=32, name=”main_mem”) virtual_addr_i = pyrtl.Input(bitwidth=32, name=”virtual_addr_i”) new_req_i = pyrtl.Input(bitwidth=1, name=”new_req_i”) reset_i = pyrtl.Input(bitwidth=1, name=”reset_i”) req_type_i = pyrtl.Input(bitwidth=1, name=”req_type_i”) physical_addr_o = pyrtl.Output(bitwidth=32,name=”physical_addr_o”) dirty_o = pyrtl.Output(bitwidth=1, name=”dirty_o”) valid_o = pyrtl.Output(bitwidth=1, name=”valid_o”) ref_o = pyrtl.Output(bitwidth=1, name=”ref_o”) error_code_o = pyrtl.Output(bitwidth=3, name=”error_code_o”) finished_walk_o = pyrtl.Output(bitwidth=1, name=”finished_walk_o”) page_fault = pyrtl.WireVector(bitwidth=1, name=”page_fault”) state = pyrtl.Register(bitwidth=2, name=”state”) base_register …

AC061D26, Read More »

CS 154 Page 1

University of California, Santa Barbara Dept. of Computer Science Lab 8: Page Table Walker in PyRTL Assigned: Due: Points: Wednesday, February 28th, 2024 Wednesday, March 6th, 2024 100 • MAY ONLY BE TURNED IN ON GRADESCOPE as PYTHON files (see below for details). • There is NO MAKEUP for missed assignments. • We strictly enforce …

CS 154 Page 1 Read More »