question

Question 1. Brownian bridge [12 marks]
Consider the process
where ๐ต๐‘ก is a standard Brownian Motion.
(a) Show that ๐‘‹๐‘ก is a standard Brownian bridge [3 marks]. (b)Find ๐ธ[exp(2๐‘‹1/2 โˆ’ 4๐‘‹1/3)] [3 marks].
(c) Find ๐ธ[๐‘‹1/4|๐ต5/6] [3 marks].
(d)Using the result from (c), use R or Mathematica to compute ๐‘ƒ (14 < ๐ธ[๐‘‹1/4|๐ต5/6] < 12). ๐‘‹๐‘ก = ๐ต๐‘ก โˆ’ ๐‘ก๐ต1, 0 โ‰ค ๐‘ก โ‰ค 1, Question 2. Stationarity [6 marks] (a) Let ๐บ๐‘ก and ๐ป๐‘ก , ๐‘ก โ‰ฅ 0, be weakly stationary stochastic processes that are independent from each other. Determine if ๐‘๐‘ก =๐บ๐‘ก๐ป๐‘ก, ๐‘กโ‰ฅ0, (b) Let ๐‘‹๐‘ก , ๐‘ก โˆˆ {... , โˆ’1,0,1, ... }, be a stochastic process consisting of a sequence of is weakly stationary [3 marks]. independent RVs with ๐‘ƒ(๐‘‹๐‘ก = โˆ’1) = ๐‘ƒ(๐‘‹๐‘ก = 1) = 12, ๐‘ก โˆˆ {...,โˆ’1,0,1,...}. ๐‘Œ๐‘ก =(๐‘‹๐‘ก +๐‘‹๐‘ก+2)2, ๐‘กโˆˆ{...,โˆ’1,0,1,,...}, Determine if is weakly stationary [3 marks]. Question 3. MC option pricing [12 marks] Under the Black-Scholes model, the prices of two stocks at time ๐‘‡ > 0 are modelled as ๐›ผ2
๐‘†๐‘‡ =๐‘†0exp((๐‘Ÿโˆ’ 2)๐‘‡+๐›ผ๐ต๐‘‡)
๐‘๐‘‡ =๐‘0exp((๐‘Ÿโˆ’ 2)๐‘‡+๐›ฝ๐‘Š๐‘‡)
where ๐ต๐‘ก and ๐‘Š๐‘ก are standard Brownian motions with cov(๐ต๐‘ก, ๐‘Š๐‘ก) = ๐œŒ๐‘ก, |๐œŒ| โ‰ค 1.
In this question take ๐‘†0 = 15, ๐‘0 = 10, ๐‘Ÿ = 1/25, ๐›ผ = 1/2, ๐›ฝ = 1/3 and ๐‘‡ = 2.
A European spread call option with strike ๐พ๐ถ = 2 has price at time ๐‘ก = 0 given by ๐ถ = ๐‘’โˆ’๐‘Ÿ๐‘‡๐ธ[max(๐‘†๐‘‡ โˆ’ ๐‘๐‘‡ โˆ’ ๐พ๐ถ, 0)].
(a) Taking ๐‘› = 105 paths, use Mathematica to calculate a crude Monte Carlo estimate of ๐ถ. Also calculate a 95% two-sided confidence interval for ๐ถ. Do this for one of the following two options (making sure to specify your choice):
โ€ข ๐œŒ = 0 [4 marks]
โ€ข ๐œŒ = 2/3 [6 marks]. If you choose this option you must use Cholesky decomposition with Mathematica function CholeskyDecomposition to simulate correlated normal RVs (do not use Mathematica functions that generate correlated normal RVs as the additional two marks will not be awarded).

Now consider the European vanilla call with strike ๐พ๐‘„ = 12 and price given by the Black-Scholes formula
๐‘„=๐‘’โˆ’๐‘Ÿ๐‘‡๐ธ[max(๐‘†๐‘‡ โˆ’๐พ๐‘„,0)] = ฮฆ(๐‘‘1)๐‘†0 โˆ’ ฮฆ(๐‘‘2)๐‘’โˆ’๐‘Ÿ๐‘‡๐พ๐‘„
and ฮฆ is N(0,1) cumulative distribution function.
๐‘‘1= (ln๐พ+(๐‘Ÿ+2)๐‘‡), ๐‘‘2=๐‘‘1โˆ’๐›ผโˆš๐‘‡
(b)Again taking ๐‘› = 105 paths, use R to calculate a Monte Carlo estimate of ๐ถ using Q as a control variate. Also calculate a 95% two-sided confidence interval for ๐ถ. Do this for one of the following two options (making sure to specify your choice):
โ€ข ๐œŒ = 0 [4 marks]
โ€ข ๐œŒ = 2/3 [6 marks]. If you choose this option you must use Cholesky decomposition with R function chol to simulate correlated normal RVs (do not use R functions that generate correlated normal RVs as the additional two marks will not be awarded).
Question 4. Markov processes [12 marks]
You may use R or Mathematica for calculations, but express your answers using proper mathematical notation.
Let ๐‘‹๐‘ก , ๐‘ก โ‰ฅ 0, be a homogenous Markov chain taking states ๐‘‹๐‘ก โˆˆ {1,2, … ,5} with generator matrix and initial distribution
โˆ’2 1/3 2/3 2/3 1/3 1/4
๐ด= 1 โ„2 โˆ’3 โ„6 โ„6 , ๐‘(0)= โ„2 ,
(1/9 2/9 5/9 1/9 โˆ’1 ) (1/4)
respectively.
(a) Find any stationary distributions of ๐‘‹๐‘ก [3 marks]. (b)Calculate ๐ธ[๐‘‹6] [3 marks].

็จ‹ๅบไปฃๅ†™ CSไปฃ่€ƒ ๅŠ ๅพฎไฟก: cstutorcs
Consider the jump diffusion
๐‘Œ๐‘ก=๐œ‡๐‘ก+๐œŽ๐ต๐‘ก+โˆ‘๐ป๐‘˜, ๐‘กโ‰ฅ0, ๐‘˜=1
where ๐œ‡ โˆˆ R, ๐œŽ > 0, ๐ต๐‘ก is a standard Brownian motion, (๐‘๐‘ก)๐‘กโ‰ฅ0 is a Poisson process with intensity ๐œ† > 0 and ๐ป๐‘˜ ~Exp(๐›ผ) for ๐‘˜ โˆˆ {1,2, … , ๐‘๐‘ก }. Assume the SPs and RVs appearing in ๐‘Œ๐‘ก are independent of each other.
(c) Find ๐ธ[๐‘’๐‘–๐‘ข๐‘Œ๐‘ก ] where ๐‘–2 = โˆ’1 and ๐‘ข โˆˆ R [3 marks]. (d)Noting that ๐ธ[๐ป๐‘˜] = 1/๐›ผ, find ๐ธ[๐‘Œ8|๐‘Œ6 = 2] [3 marks].
Question 5. ARMA processes [12 marks]
Consider the process
๐‘‹๐‘ก โˆ’2๐‘‹๐‘กโˆ’1 โˆ’3๐‘‹๐‘กโˆ’2 + 5 ๐‘‹๐‘กโˆ’3 =๐‘๐‘ก +17๐‘๐‘กโˆ’1 โˆ’23๐‘๐‘กโˆ’2 โˆ’ 65 ๐‘๐‘กโˆ’3, ๐‘กโˆˆZ, 3 4 12 42 28 168
where ๐‘๐‘ก, ๐‘ก โˆˆ Z, is a zero-mean white-noise process with variance ๐œŽ2.
(a)The process above is not stationary. Explain why and identify an appropriate
ARIMA(๐‘, ๐‘‘, ๐‘ž) model [3 marks].
(b) Describe how the ARIMA(๐‘, ๐‘‘, ๐‘ž) model from (a) could be converted to an ARMA(๐‘, ๐‘ž)
model [3 marks].
(c) Determine if the ARMA(๐‘, ๐‘ž) from (b) is invertible [3 marks].
(d) Plot the ARIMA(๐‘, ๐‘‘, ๐‘ž) and ARMA(๐‘, ๐‘ž) models identified in (a) and (b) respectively withvar(๐‘๐‘ก)=๐œŽ2 =2for๐‘กโˆˆ{0,1,2,…,500}.UseMathematicaorRforthis[3marks].
Question 6. Diffusion processes [12 marks]
Consider the diffusion process
๐‘‹๐‘ก =exp(๐‘ก+๐ต๐‘ก2), ๐‘กโ‰ฅ0, where ๐ต๐‘ก is a standard Brownian motion.
(a) Using the Ito formula, write down the stochastic integral equation of the process ๐‘‹๐‘ก [3 marks].

็จ‹ๅบไปฃๅ†™ CSไปฃ่€ƒ ๅŠ QQ: 749389476
(b)Write down the Kolmogorov backward equation for ๐‘‹๐‘ก [3 marks].
Now consider the standard geometric OU process
๐‘๐‘ก =exp(๐‘’โˆ’๐‘ก+๐‘’โˆ’๐‘กโˆซ๐‘’๐‘ข๐‘‘๐ต๐‘ข), ๐‘กโ‰ฅ0, 0
where ๐ต๐‘ก is a standard Brownian motion.
(c) Show that the transition density function of ๐‘๐‘ก is given by
1 (log(๐‘ฆ) โˆ’ ๐‘’โˆ’(๐‘กโˆ’๐‘ )log (๐‘ฅ))2 ๐‘“(๐‘ฆ, ๐‘ก|๐‘ฅ, ๐‘ ) = ๐‘ฆโˆš๐œ‹(1 โˆ’ ๐‘’โˆ’2(๐‘กโˆ’๐‘ )) exp (โˆ’ 1 โˆ’ ๐‘’โˆ’2(๐‘กโˆ’๐‘ ) ).
(d)Show that the stochastic differential equation of the process ๐‘๐‘ก is given by ๐‘‘๐‘๐‘ก =(12โˆ’log(๐‘๐‘ก))๐‘๐‘ก๐‘‘๐‘ก+๐‘๐‘ก๐‘‘๐ต๐‘ก.

CS Help, Email: tutorcs@163.com